Hopp til innhold

Få varsel ved oppdateringer av «Ontology-driven and artificial intelligence-based repeated dose toxicity testing of chemicals for next generation risk assessment (ONTOX)»

Hvor ofte ønsker du å motta varsler fra fhi.no? (Gjelder alle dine varsler)
Ønsker du også varsler om:

E-postadressen du registrerer her vil kun bli brukt til å sende ut nyhetsvarsler du har bedt om. Du kan når som helst avslutte dine varsler og slette din e-post adresse ved å følge lenken i varslene du mottar.
Les mer om personvern på fhi.no

Du har meldt deg på nyhetsvarsel for:

  • Ontology-driven and artificial intelligence-based repeated dose toxicity testing of chemicals for next generation risk assessment (ONTOX)

Prosjekt

Ontology-driven and artificial intelligence-based repeated dose toxicity testing of chemicals for next generation risk assessment (ONTOX) - prosjektbeskrivelse

Publisert Oppdatert

ONTOX will deliver a generic strategy to create innovative new approach methodologies  to predict systemic repeated dose toxicity effects that, when combined with tailored exposure assessment, will enable human risk assessment.


Sammendrag

ONTOX will deliver a generic strategy to create innovative new approach methodologies (NAMs) in order to predict systemic repeated dose toxicity effects that, upon combination with tailored exposure assessment, will enable human risk assessment.This strategy can be applied to any type of chemical and systemic repeated dose toxicity effect.However, for proof-of-concept purposes, focus will be put on 6 specific NAMs addressing adversities in the liver (steatosis and cholestasis), kidneys (tubular necrosis and crystallopathy) and developing brain (neural tube closure and cognitive function defects) induced by a variety of chemicals, including from the pharmaceutical, cosmetics, food and biocide sectors.The 6 NAMs will each consist of a computational system based on cutting-edge artificial intelligence (AI) and will be primarily fed by available biological/ mechanistic, toxicological/ epidemiological, physico-chemical and kinetic data. Data will be consecutively integrated in physiological maps, quantitative adverse outcome pathway networks and ontology frameworks. Data gaps, as identified by AI, will be filled by targeted state-of-the-art in vitro and in silico testing.The 6 NAMs will be evaluated and applied in collaboration with industrial and regulatory stakeholders in order to maximise end-user acceptance and regulatory confidence.This is anticipated to expedite implementation in risk assessment practice and to facilitate commercialisation.

Se fullstendig prosjektbeskrivelse på Cristin for mer informasjon om resultater, deltakere, kontakter med mer

Prosjektdeltakere

Prosjektleder

Hubert Dirven, Avdeling for miljø og helse, Norwegian Institute of Public Health

Prosjektdeltakere

Inger-Lise Karin Steffensen, Avdeling for miljø og helse, Norwegian Institute of Public Health
Birgitte Lindeman, Avdeling for miljø og helse, Norwegian Institute of Public Health
Oddvar Myhre, Avdeling for miljø og helse, Norwegian Institute of Public Health
Marcin Wlodzimierz Wojewodzic, Avdeling for miljø og helse, Norwegian Institute of Public Health

Start

01.05.2021

Slutt

31.12.2026

Status

Pågående

Prosjekteier/ prosjektansvarlig

Norwegian Institute of Public Health

Prosjektleder

Hubert Dirven