Hopp til innhold

Selected items added to basket

Go to basket
Article

Cyanobacteria (blue-green algae)

Cyanobacteria are photosynthetic bacteria which occur naturally in water sources. In some waters these organisms can form water blooms. These water blooms can create problems for the utilisation of the sources for drinking water or recreation, since cyanobacteria can produce several toxic compounds.

Blue-green algae
Blue-green algae. Photo: Colourbox.com

It has also been shown that cyanobacteria blooms create good growth conditions for heterotrophic opportunistic pathogenic bacteria. Aerosols from these blooms produced during recreation activities can contain toxins and pathogenic bacteria.

The most important species of cyanobacteria in this regard are Aphanizomenon, Anabena, Nostoc, Plankthotrix (formerly known as Oscillatoria) and Microcystis.

Cyanobakterier
Cyanobakterier: Aphanezomenon, Anabaena, Nostoc, Planktothrix (Oscillatoria), Microcystis . Foto: Colourbox.com

From left to right: Aphanizomenon, Anabena, Nostoc, Plankthotrix (formerly known as Oscillatoria) and Microcystis

The best known toxins are liver damaging peptides (hepatotoxins) and the neurotoxic alkaloids, which effectively block nerve pulses. Compounds produced by cyanobacteria are associated with neurodegenerative (amyotrophic lateral sclerosis/Parkinsonism-dementia complex (ALS-PDC).

Research

The main research areas are development and evaluation of methods for the detection of cyanobacteria toxins and studies examining the influence of environmental factors on toxin production by, and growth of, cyanobacteria, and the effect of cyanobacteria on growth of Legionella.

Publications

Gjølme, N & Utkilen, H. (1994). A simple and rapid method for extraction of toxic peptides from cyanobacteria. In: Detection methods for cyanobacterial toxins. (eds. G.A. Codd, T.M. Jefferies, C.W. Keevil & E. Potter). The Royal Soc. of Chemistry. pp. 168-171.

Gjølme, N. & Utkilen, H. (1996). The extraction and stability of microcystin-RR in different solvents. J. Phycol. 35 (suppl. 6):80-82.

Utkilen, H. & Gjølme, N. (1992). Toxin production by Microcystis aeruginosa as a function of light in continuous cultures and its ecological significance. Appl. Environ. Microbiol. 58:1321-1325.

Utkilen, H. & Gjølme, N. (1995). Iron-stimulated toxin production in Microcystis aeruginosa. Appl. Environ. Microbiol. 61:797-800.

Utkilen, H., Gjølme, N., Skulberg, O., Underdal, B. (1997). Cyanobacterial toxins in water resources in Norway. I Toxische cyanobacterien in deutschen gewassern. WaBoLu 4. 97 45-48.

Kiefer, H., Luck, S., Gjølme, N., Utkilen, H. (1997) The effect of iron limited growth on toxin production in microcystis. WaBoLu 4. 97 146-149.

Utkilen, H., Skulberg, O.M., Skulberg, R., Gjølme, N., Underdal, B. (2001). Toxic cyanobacterial blooms of inlandwaters in southern Norway 1978-1998. I Cyanotoxins (Ed. I. Chorus). 46-49. Springer, Berlin, Heidelberg, New York.

Fastner, J., Codd, G.A., Metcalf, J.S., Woitke, P., Wieder, C., Utkilen, H. (2002). An international intercomparison exercise for the determination of purified microcystin-LR and microcystins in cyanobacterial field material. Anal. Bioanal. Chem. 374: 437-444.

Codd, G.A,. Young, F.M. and Utkilen, H.C. (2005). Europe: Cyanobacteria, cyanotoxins, their health significance and risk management. UNESCO report.

Rohrlack, T., Utkilen, H. (2007). Effect of nutrient and light availability on production of bioactive oligopeptides in the cyanobacterium Planktothrix agardhii. Hydrobiologia 73 (22) 7322 - 7330

Rohrlack, T., Edvardsen, B., Skulberg, R., Halstvedt, C.B., Utkilen, H., Ptacnik, R., Skulberg, O. (2008). Oligopeptide chemotypes of the toxic cyanobacterium Planktothrix can form subpopulations with dissimilar ecological traits. Limnol. Oceanogr. 53(4)  1279 – 1293.

Nederbragt, A.L., Balasingham, M., Sirevåg, R., Utkilen, H., Jakobsen , K. S. , A., Anderson-Glenna. (2008)  Multiple-locus variable-number tandem repeat analysis of Legionella pneumophila using multi-colored capillary electrophoresis. J.  Microbial methods. 73 (2) 111 - 7

Utkilen, H., Kvernrød, I. A. og Gjølme, N. (2008). Er cyanobakterieoppblomstringer  en gunstig nisje for utviklingen av heterotrofe bakteriepopulasjoner? Vann 43 (2) 105 – 110. 

Gjølme, N., Utkilen, H. and Rohrlack, T. (2009). Protein: a Proposal for a standards method to express cyanobacterial biomass in laboratory experiments.  Harmfull Algae.  8: 726 – 729.

Bomo, A.,M. Tryland, I., Haande, S., Corneliussen, C., Utkilen, H. (2011) Growth of opportunistic pathogenic bacteria associated with cyanobacteria. Water Science and Technology. 64 2: 384 – 389.

Bolstad, K., Utkilen, H., Rohrlack, T., Thiodolf, A., M., Aaberge, I., Fonahn, Kvernrød, I. A., Wedege E. (2011).  Do rowing activities in waters with cyanobacterial blooms constitute a health risk for Legionella infectiions? 40th Scandinavian Society of Immunolgy meeting Geilo. April.